-16x^2-18x+24=0

Simple and best practice solution for -16x^2-18x+24=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16x^2-18x+24=0 equation:



-16x^2-18x+24=0
a = -16; b = -18; c = +24;
Δ = b2-4ac
Δ = -182-4·(-16)·24
Δ = 1860
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1860}=\sqrt{4*465}=\sqrt{4}*\sqrt{465}=2\sqrt{465}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{465}}{2*-16}=\frac{18-2\sqrt{465}}{-32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{465}}{2*-16}=\frac{18+2\sqrt{465}}{-32} $

See similar equations:

| 5m+1=9 | | F(x)=12x+6 | | 7x+15=5x | | -6x=-9x+30 | | 12x+5+21x=180 | | 3n-15=25 | | a^2-14=5a | | 2x-4/7x+3=4/5 | | 31x+6+11x+6=180 | | (2/3)x+1=(1/3)x-6 | | 31x+6=11x+6 | | 7v+3=6v-22 | | d/4+12=5 | | -3y+2y+11=0 | | 4+3(n-5)=19 | | -3y+2y—11=0 | | ∑k=19(3k−8)(6k+3) | | -8x+35=-1x | | 8x=15.52 | | 2(8n)+2=3(2)(8n) | | 2(n+3)=2n-7 | | -4(n-16)=-8 | | -8(8b-7)= | | 2x-2=3(3x-7) | | -2(k-6)=-18 | | X.7x-9=5 | | -(4v-1)-(6-5v)=v+8-8v+3 | | 4x-600=2600 | | 7-6x=x+222 | | 65+54x+7=180 | | 5j-1=180 | | 5x/6-3=(9x—1)/5+3 |

Equations solver categories